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BICEP2
• Inflation (and its alternatives) predict initial curvature 

perturbations with a nearly scale invariant power spectrum 

!

• Some models of inflation (but not its alternatives) predict 
initial gravity wave perturbations with power spectrum 

!

• CMB temperature constraint on r is fairly strong but sample 
variance limited: r < 0.11 (95% CL, Planck) 

• B-mode polarization experiments can ultimately provide 
much better constraints, but very low noise is required 

• 17 Mar 2014: BICEP2 reports 7𝜎 detection,                        !  r = 0.2+0.07
�0.05

(k3/2⇡2)P⇣(k) = �2
⇣(k/k0)

ns�1

(k3/2⇡2)Pgw(k) = r�2
⇣(k/k0)

nt



BICEP2

In single-field slow-roll inflation
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BICEP2
Post-BICEP2, everything is pinned down!

⇒ Energy scale of inflation 

Field excursion per e-folding
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BICEP2: gravity waves or dust?
At issue: whether the B-mode signal seen by BICEP2 must be 
cosmological gravity waves, or whether it can be explained as 
polarized thermal emission by dust grains in our galaxy

BICEP2 collaboration



BICEP2: gravity waves or dust?
BICEP2 paper argues:  
!
  - Frequency dependence of signal  
is consistent with CMB (blackbody), 
inconsistent at ~2𝜎 with dust (𝜈2). 
!
(Statistical power of this test is low 
since most data is at 150 GHz) 
!
!
!
  - Amplitude of signal is too large 
to be consistent with wide range 
of dust models

BICEP2 collaboration



BICEP2: gravity waves or dust?
More recent work has argued that: 
!
!
- Frequency dependence is consistent 
with dust, when dust sample variance 
and CMB lensing are accounted for 
!
!
!
- BICEP2 points can be fit by lensed 
CMB + dust model assuming ~10% 
polarization fraction, and this level of 
polarization is consistent with our 
current knowledge of foregrounds

Flauger, Hill & Spergel, 1405.7351

Mortonson & Seljak 1405.5857



BICEP2: gravity waves or dust?
This controversy will be resolved soon, by some combination of:

• Planck measurements at 353 GHz CMB polarization in 
the BICEP2 field 

!

• Planck measurement of r (combining many frequencies) 
!

• More 100 GHz data from Keck (BICEP2 successor) 
!

• Data from other experiments?  (SPTpol, ACTpol, 
Polarbear, ABS, others?)

In the meantime, best to take an agnostic approach? 
!
In this talk, I’ll consider both scenarios, where BICEP2 either 
does or does not hold up



Example: axion dark matter
Can dark matter be the QCD axion?

Visinelli & Gondolo, 1403.4594

If BICEP2 does not hold up:  
two regions of parameter space  
are allowed; axion mass can be  
between 10-12 and 10-2 eV. 
!
If BICEP2 does hold up: only 
a small region of parameter 
space survives; axion mass is 
!
   ma = (7⇥ 10�5 eV)(↵+ 1)6/7

where α represents conversion rate of axion topological defects 
to axions; computable in principle with simulations



“Local” non-Gaussianity
In single-field slow roll inflation, the curvature perturbation 𝜁 
is Gaussian to an extremely good approximation (Maldacena 2002)

A simple non-Gaussian model: “local model”

⇣(x) = ⇣G(x) +
3
5
f loc

NL⇣G(x)2 + · · ·
where       is a Gaussian field and          is a free parameter. f loc

NL⇣G

Occurs generically in multifield inflation, when fields 
other than the inflaton contribute to the curvature perturbation 𝜁 
    e.g. modulated reheating: spectator field 𝜎 controls decay 
            rate of inflaton 
    e.g. “curvaton”: spectator field decays to SM particles and 
            gives dominant contribution to 𝜁



“Local” non-Gaussianity
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        generates a nonzero three-point 
function <𝜁k1 𝜁k2 𝜁k3>, which turns out  
to have highest signal-to-noise in  
“squeezed” triangles

f loc

NL

Planck: f local

NL = 2.7± 5.8 (consistent with Gaussian)



“Local” non-Gaussianity
The local model can be generalized to include cubic terms 
or multiple non-Gaussian source fields:
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“Local” non-Gaussianity
If BICEP2 holds up:          is still possible, but more artificial 
   and must be accompanied by four-point signal     

f loc

NL
⌧NL

Reason: the “standard” relation r=16𝜀 assumes that only the 
inflaton contributes to 𝜁.  If other fields contribute then it 
generalizes to r=16𝜀Q, where Q is the fraction (in power) 
contributed by the inflaton.

If r=0.2, and we need 𝜀 small, then Q can’t be << 1 
   => the inflaton contributes in addition to non-Gaussian sources 
   => some level of tuning needed 
   => if          is nonzero, must have at least two sources (inflaton 
+ a non-Gaussian source), so expect 
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“Non-local” NG: DBI inflation

String-motivated model of inflation 
(Alishahiha, Silverstein & Tong)

After a suitable change of variables, the effective action can be 
approximated as a massless scalar with a       interaction

small coupling constant
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To first order in f, non-Gaussianity shows up in the 3-point function
k1 k2

k3

DBI example:

Signal-to-noise comes from equilateral triangles
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EFT of inflation 

1-1 correspondence between operators in       and        -like parameters 
(Degree-N operator shows up in N-point CMB correlation function)
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Equilateral+orthogonal 3-point functions 
(Senatore, KMS & Zaldarriaga 2009)

Higher-derivative 3-point functions  
(Behbahani, Mirbabayi, Senatore & KMS to appear)

4-point functions 
(Senatore & Zaldarriaga 2009)

Quasi single-field inflation 
(Chen & Wang 2009, 

Baumann & Green 2011) 
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Equilateral and orthogonal shapes
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The 3-point functions of the operators  
are highly correlated but not identical.  Therefore, a “generic” 
linear combination gives the equilateral 3-point function, but  
there is a specific linear combination which gives a new  
“orthogonal” 3-point function.

⇡̇3, ⇡̇(@i⇡)
2

Following this logic one can define 3-point observables  
                          (Senatore, KMS & Zaldarriaga 2009)f equil
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Interesting fact: the coefficient of the operator                is 
determined by the sound speed cs of the fluctuations 

⇡̇(@i⇡)
2

so we can interpret the measurement of 
as a measurement of cs and the “nuisance” parameter A

Equilateral and orthogonal shapes
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NL , forthog
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Equilateral and orthogonal shapes
If the BICEP2 result holds up, what are the implications? 
!
1. Lower bound on sound speed cs is suddenly much better!

r = 16✏cs => if r=0.2 and we need small 𝜀 to get inflation, 
        then cs cannot be too small
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Non-Gaussianity: current status
Blue = constraint reported in recent Planck papers
Red = no constraint reported

3-point                                         4-point

⌧NL
gNL

In all cases, no deviation from Gaussian statistics is found, but 
not all cases have been analyzed

Quasi-single field inflation
Operators 
  
Quasi-single field inflationHigher-derivative models
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Conclusion: what’s next?

Most immediate priority is to reach a conclusion on whether 
BICEP2 is seeing gravity waves or dust emission.  Need more 
data but this will happen very soon (months!) 
!
If BICEP2 holds up, there are many implications: 
   - inflation confirmed and alternatives ruled out 
   - energy scale of inflation known (GUT-scale) 
   - many parameter spaces dramatically reduced  
         (axion DM, primordial NG) 
   - next frontier will be precision measurements of the 
      gravity wave B-mode, to get as much information as 
      we can about V(𝜙) (e.g. m2𝜙2 or something else?)



Conclusion: what’s next?

In parallel, we’ll continue the program of “parametrizing all 
possible surprises” and shrinking error bars.  (curvature, neutrino 
mass, dark energy equation of state, primordial NG, etc.) 
!
!
A medium-term goal: measure the neutrino mass, or more properly 
the sum of neutrino masses            , guaranteed to be > 0.06 eV 

P
m⌫



CMB: 2d field, lmax=2000  
             ⇒ (4 x 106 modes) 
!
Large-scale structure: 3d field, kmax=0.5 Mpc-1, zmax=1.0 
             ⇒ (2 x 108 modes) 
!
Ultimate futuristic scenario: large-scale structure at high redshift, 
measured via 21-cm line.  In this case there is essentially no 
theoretical limit to the number of modes which might ultimately 
be measured (number of modes larger than the Jeans scale is 1018)  

Looking further ahead, we’re a long way from saturating  
ultimate limits on cosmological parameters, essentially by 
mode-counting: 

Conclusion: what’s next?



Future experiments will need to solve many hard problems 
(hardware, modeling, and statistical).  It’s easy to be pessimistic  
in the face of hard problems.  However, historical evidence 
suggests a perspective of cautious optimism…

Conclusion: what’s next?



• Peebles: “I did not continue (with computation of CMB 
anisotropy), in part because I had trouble imagining that 
such tiny disturbances could be observed”
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Conclusion: what’s next?



• Peebles: “I did not continue (with computation of CMB 
anisotropy), in part because I had trouble imagining that 
such tiny disturbances could be observed” 

• Sunyaev: “I did not think that the acoustic oscillation 
would ever be observed”

Future experiments will need to solve many hard problems 
(hardware, modeling, and statistical).  It’s easy to be pessimistic  
in the face of hard problems.  However, historical evidence 
suggests a perspective of cautious optimism…
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• Peebles: “I did not continue (with computation of CMB 
anisotropy), in part because I had trouble imagining that 
such tiny disturbances could be observed” 

• Sunyaev: “I did not think that the acoustic oscillation 
would ever be observed” 

• Mukhanov: “I thought it would take 1000 years to detect 
the logarithmic dependence of the power spectrum”

Future experiments will need to solve many hard problems 
(hardware, modeling, and statistical).  It’s easy to be pessimistic  
in the face of hard problems.  However, historical evidence 
suggests a perspective of cautious optimism…

Conclusion: what’s next?


